Brassinosteroid regulates seed size and shape in Arabidopsis.
نویسندگان
چکیده
Seed development is important for agriculture productivity. We demonstrate that brassinosteroid (BR) plays crucial roles in determining the size, mass, and shape of Arabidopsis (Arabidopsis thaliana) seeds. The seeds of the BR-deficient mutant de-etiolated2 (det2) are smaller and less elongated than those of wild-type plants due to a decreased seed cavity, reduced endosperm volume, and integument cell length. The det2 mutant also showed delay in embryo development, with reduction in both the size and number of embryo cells. Pollination of det2 flowers with wild-type pollen yielded seeds of normal size but still shortened shape, indicating that the BR produced by the zygotic embryo and endosperm is sufficient for increasing seed volume but not for seed elongation, which apparently requires BR produced from maternal tissues. BR activates expression of SHORT HYPOCOTYL UNDER BLUE1, MINISEED3, and HAIKU2, which are known positive regulators of seed size, but represses APETALA2 and AUXIN RESPONSE FACTOR2, which are negative regulators of seed size. These genes are bound in vivo by the BR-activated transcription factor BRASSINAZOLE-RESISTANT1 (BZR1), and they are known to influence specific processes of integument, endosperm, and embryo development. Our results demonstrate that BR regulates seed size and seed shape by transcriptionally modulating specific seed developmental pathways.
منابع مشابه
Brassinosteroid functions in Arabidopsis seed development
Seed development of flowering plant is a complicated process controlled by a signal network. Double fertilization generates 2 zygotic products (embryo and endosperm). Embryo gives rise to a daughter plant while endosperm provides nutrients for embryo during embryogenesis and germination. Seed coat differentiates from maternally derived integument and encloses embryo and endosperm. Seed size/mas...
متن کاملBRASSINOSTEROID INSENSITIVE2 interacts with ABSCISIC ACID INSENSITIVE5 to mediate the antagonism of brassinosteroids to abscisic acid during seed germination in Arabidopsis.
Seed germination and postgerminative growth are regulated by a delicate hormonal balance. Abscisic acid (ABA) represses Arabidopsis thaliana seed germination and postgerminative growth, while brassinosteroids (BRs) antagonize ABA-mediated inhibition and promote these processes. However, the molecular mechanism underlying BR-repressed ABA signaling remains largely unknown. Here, we show that the...
متن کاملBRASSINOSTEROID INSENSITIVE2 Interacts with ABSCISIC ACID INSENSITIVE5 to Mediate the Antagonism of Brassinosteroids to Abscisic Acid during Seed Germination in ArabidopsisW
Seed germination and postgerminative growth are regulated by a delicate hormonal balance. Abscisic acid (ABA) represses Arabidopsis thaliana seed germination and postgerminative growth, while brassinosteroids (BRs) antagonize ABA-mediated inhibition and promote these processes. However, the molecular mechanism underlying BR-repressed ABA signaling remains largely unknown. Here, we show that the...
متن کاملManipulation of Auxin Response Factor 19 affects seed size in the woody perennial Jatropha curcas
Seed size is a major determinant of seed yield but few is known about the genetics controlling of seed size in plants. Phytohormones cytokinin and brassinosteroid were known to be involved in the regulation of herbaceous plant seed development. Here we identified a homolog of Auxin Response Factor 19 (JcARF19) from a woody plant Jatropha curcas and genetically demonstrated its functions in cont...
متن کاملC4 Protein of Sweet Potato Leaf Curl Virus Regulates Brassinosteroid Signaling Pathway through Interaction with AtBIN2 and Affects Male Fertility in Arabidopsis
Sweepoviruses have been identified globally and cause substantial yield losses and cultivar decline in sweet potato. This study aimed to investigate the interaction between sweepovirus and plant host by analyzing the function of the viral protein C4 of Sweet potato leaf curl virus-Jiangsu (SPLCV-JS), a sweepovirus cloned from diseased sweet potato plants in East China. Ectopic expression of the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 162 4 شماره
صفحات -
تاریخ انتشار 2013